martes, 2 de junio de 2009
5 - libros de matematicas
Hank Tade-Mai es un viajero que retorna en su camello a Bagdad, luego de una excursión a la ciudad de Samarra. En su camino, encuentra a un hombre modestamente vestido, sentado en una piedra y exclamando en voz alta números gigantescos. El hombre que calculaba dice llamarse Beremiz Samir y cuenta que nació en Persia, donde trabajando como pastor comenzó a contar ovejas para no extraviar ninguna, siendo que a partir de entonces tomó el gusto por contar y calcular acerca de todo lo que encuentra a su paso.
7 - hojas de problemas
1-Coloca diez soldaditos sobre una mesa de modo que haya cinco filas de cuatro soldaditos.
2-¿Cuántos 9 se utilizan para escribir todos los números del 0 al 300?
3-Quita 8 palillos de la figura que tiene 24.
a) Quita 8 para que queden 5 cuadrados.
b) Quita 8 para que queden 4 cuadrados.
c) Quita 8 para que queden 2 cuadrados.
4) El producto de las edades de tres personas es 390 ¿Cuáles son dichas edades?
5) Sitúa doce soldaditos sobre una mesa de modo que haya seis filas de cuatro soldaditos.
6) Cuatro vacas suizas y tres autóctonas dan tanta leche en cinco días como tres vacas suizas y cinco autóctonas en cuatro días. ¿Que vaca es mejor lechera, la suiza o la autóctona?
7) El primer digito de un número de seis cifras es 1. Si se mueve al otro extremo, a la derecha, manteniendo el orden del resto de las cifras, el nuevo número es tres veces el primero. ¿Cuál es el número original?
8) Un amigo le dice al otro:
- Tengo tres hijas, el producto de sus edades es 36 y su suma coincide con el número de esta casa.
- No puedo averiguar las edades, responde el amigo.
- ¡Ah! Es cierto. La mayor toca el piano.
- Ya sé las edades de tus hijas.
¿Cuáles son?
9) Cambiando solo tres cifras de lugar, has de conseguir invertir el triangulo, poniendo la base arriba y el vértice abajo.
10) TRES CABALLEROS CON SUS ESCUDEROS. Tres caballeros, cada uno con su escudero, se reunieron para cruzar un río. Encontraron una barca pequeña de dos plazas. Pero surgió una dificultad: todos los escuderos se niegan a permanecer con caballeros desconocidos sin la presencia de su amo. No valieron amenazas. Los testarudos escuderos se mantuvieron en lo suyo. Las seis personas a la otra orilla cumpliendo la condición.
¿Cómo lo hicieron?
Hoja de problemas 1.3
1) ¿De cuántas formas diferentes se pueden juntar 8€ utilizando solo monedas de 2€, 1€ y 0.50 €?
2) Un motorista sale de su casa para acudir a una cita. Se da cuenta de que si viaja a 60 km/h llegará un cuarto de hora tarde, pero si lo hace a 100 km/h llegará un cuarto de hora antes. ¿A qué distancia está su destino?
3) Si los miembros de un grupo bailan de dos en dos, sobra uno. Si lo hacen de tres en tres, sobran dos, y si lo hacen de cinco en cinco también sobran dos.
¿Cuántas personas componen el grupo sabiendo que su número está comprendido entre 10 y 20? ¿Y si estuviera comprendido entre 30 y 50?
4) Utilizando solamente la cifra 5 y las operaciones oportunas se puede obtener cualquier número.
Por ejemplo, para obtener 6 podemos hacer:
55: 5 – 5 = 6
Busca la manera de obtener con la mínima cantidad de cincos:
a) Los veinte primeros números naturales.
b) Los números 111 y 125.
c) Los números 500, 1000 y 3000.
5) Un nenúfar, en un lago, dobla su tamaño todos los días. En un mes cubre todo el lago. ¿Cuánto tiempo tardarán dos nenúfares en cubrir todo el lago?
6) ¿Son ciertas las siguientes afirmaciones? Razona tus respuestas.
a) La suma de dos números consecutivos no es múltiplo de dos.
b) La suma de dos impares consecutivos no es múltiplo de cuatro.
c) La suma de tres números naturales consecutivos es múltiplo de tres.
7) ¿Cuántos capicúas existen de cuatro cifras en los que las dos cifras extremas suman lo mismo que las dos centrales?
8) ¿Cuántos tramos de carretera son necesarios para comunicar cuatro ciudades de forma que desde cada una se pueda llegar a cualquier otra sin pasar por una tercera? ¿Y para comunicar cinco ciudades?
¿Y para comunicar n ciudades?
9) Un grupo de amigos va a comer a un restaurante chino. Cada dos comparten un plato de arroz, cada 3 uno de salsa y cada cuatro uno de carne. En total se sirvieron 65 platos. ¿Cuántos amigos fueron a comer?
10) ¿En cuantos ceros acaba el número 125!?
11) ¿Cuál es el último dígito de la expresión 2 (elevado a la 103) + 3?
12) De los 30 alumnos y alumnas de una clase, 15 declaran ser aficionados al rock, y 13, al bacalao. Hay 6 de ellos que son aficionados a ambos ritmos musicales. ¿Cuántos no son aficionados ni a lo uno ni a lo otro?
Hoja de problemas 2.1
1. Los tres condenados
Tres ladrones, que llamaremos A, B y C, fueron capturados mientras robaban en el palacio de un Gobernador despótico, y condenados a muerte por él mismo.
Antes de cumplirse la sentencia, el Gobernador se arrepintió de su severidad, y decidió indultar a uno de los tres presos. Para procurar que este beneficio recayese en el más inteligente de los tres condenados, dispuso lo siguiente:
A la vista de los presos mostró tres tiras de paño blanca y dos tiras negras. Después ordenó que a la espalda de cada preso por separado se colgase una de estas cinco tiras. Hecho esto, permitió que los presos se viesen libremente entre sí, pero que no se comunicasen. Prometió la libertad al primero que supiese acertar, con razonamiento infalible, el color de su tira.
El preso A vio que las tiras de B y C eran blancas y a los pocos segundos pidió ser llevado ante el Gobernador, quien expuso la respuesta acertada.
¿Qué fue lo que dijo A y cómo lo razonó?
solucion:
Inmediatamente A sospechó que su tira era blanca porque en caso contrario B vería una cinta negra, la de A más una cinta blanca, la de C. Y por bruto que fuese B debería razonar así: Puesto que A la lleva negra y C no grita que está viendo dos negras (y que por tanto la suya es blanca) es que yo llevo la blanca. El hecho de que B no hubiese hecho esta deducción al instante, convenció enseguida a A de que su propia cinta era blanca. Y cómo necesitó unos segundos menos que B y que C para hacer este razonamiento (que B y C debieran haber hecho idénticamente) se demostró la mayor inteligencia de A que fue indultado.
2. Triquis y traques
Los triquis y los traques son dos curiosas tribus que tienen esta notable particularidad: Que los hombres triquis mienten siempre, mientras que los traques no mienten jamás. Un explorador, que se deslizaba por el río a bordo de una barca conducida por un indígena, vio en la orilla a otro indígena que por su apariencia física se adivinaba de tribu contraria a la de su barquero. -¿De qué tribu eres tú?- interrogó el explorador al hombre de la orilla.
La respuesta se hizo confusa, por la distancia, y el explorador preguntó a su barquero: -¿Qué es lo que me ha respondido? -Dice que es un traque- contestó el barquero.
Se trata ahora de saber a qué tribu pertenecía cada uno de los indígenas.
La clave para averiguarlo es fijarse en que a la primera pregunta del explorador, todos deben contestar que son traques (si lo son, porque es verdad; si no lo son, para mentir). Luego el barquero reprodujo la respuesta exacta. Luego el barquero es traque y el de la orilla es triqui.
UN CALENDARIO CON DOS CUBOS. Para señalar el día se colocan los cubos de manera que sus caras frontales den la fecha. En cada cubo, cada una de las caras porta un número del 0 a 9, distribuidos con tanto acierto que siempre podemos construir las fechas 01, 02, 03, ..., 31 disponiéndolos adecuadamente.
¿Sabe Vd. cuáles son los cuatro dígitos no visibles en el cubo de la izquierda, y los tres ocultos en el de la derecha?
UN CALENDARIO CON DOS CUBOS (Solución)
En el de la izquierda: 0-1-2-6-7-8.
En el de la derecha: 3-4-5-0-1-2.
El 6 hace las veces de 6 y de 9.
lunes, 18 de mayo de 2009
00 - INDICE
-Números estraordinarios
-Matematicas y tecnología
-Matematicas: juegos diversiones y curiosidades matematicas
-Mosaicos y teselaciones
-Hoja de problemas 1.3
-Hoja de problemas 2.1
-Hoja de problemas 1.2
-Matematicas y arte
-Videos matematicos
-Matematicos ilustres
INDICE:
0 - Índice de secciones
1 - Enlaces de Interés
1.1 - http://tallerdemateprofe.blogspot.com/
2 - Grandes Matemáticos
2.1 - Georg Cantor. Teoría de conjuntos
3 - Videos Matemáticos
4 - Matemáticas: Juegos, Diversiones y Curiosidades
5 - Libros de Matemáticas
5.1 El hombre que calculaba
6 - Geometría
6.1 - Poliedros. Sólidos Platónicos
6.2 - Fractales
7 - Hojas de Problemas
7.1 - Hoja de Problemas 1.2
7.2 - Hoja de Problemas 1.3
7.3 - Hoja de Problemas 2.1
8 - Matemáticas y Arte
8.1 - Maurits Cornelis Escher
8.2 - Aleksandr Ródchenko
8.3 - Mosaicos y Teselaciones. Hueso Nazarí
8.4 - Fotografía Matemática
9 - Matemáticas y Tecnología
9.1 - Telecomunicaciones
TCP/IP, , HTTP, HTML
Vinton Cerf, Tim Berners-Lee
10 - Números Exstraordinarios
10.1 - El Número de Oro φ (fi)
Relación con la serie de Fibonacci
El número áureo en la Naturaleza
El número áureo en el ser humano
El número áureo en el Arte
El número áureo en la Música
10.2 - El Número π (pi)
10.3 - El Número e
lunes, 27 de abril de 2009
Números extraordinarios
Se trata de un número algebraico que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como “unidad” sino como relación o proporción. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza en elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, etc.
π (pi) es la relación entre la longitud de una circunferencia y su diámetro, en Geometría euclidiana. Es un número irracional y una de las constantes matemáticas más importantes. Se emplea frecuentemente en matemáticas, física e ingeniería. El valor numérico de π, truncado a sus primeras cifras, es el siguiente:
El valor de π se ha obtenido con diversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física, junto con el número e. Por ello, tal vez sea la constante que más pasiones desata entre los matemáticos profesionales y aficionados. La relación entre la circunferencia y su diámetro no es constante en geometrías no euclídeas.
Relación con la serie de Fibonacci
Si se denota el enésimo número de Fibonacci como Fn, y al siguiente número de Fibonacci, como Fn + 1, descubrimos que a medida que n aumenta, esta razón oscila siendo alternativamente menor y mayor que la razón áurea. Podemos también notar que la fracción continua que describe al número áureo produce siempre números de Fibonacci a medida que aumenta el número de unos en la fracción. Por ejemplo: = 1.5, = 1.6, y = 1.61538461..., lo que se acerca considerablemente al número áureo. Entonces se tiene que:
Esta propiedad fue descubierta por el astrónomo aleman Johannes Kepler, sin embargo, pasaron más de cien años antes de que fuera demostrada por el matemático inglés Robert Simson.
A mediados del siglo XIX el matemático francés Jacques Philippe Marie Binet redescubrió una fórmula que aparentemente ya era conocida por Leonhard Euler, y por otro matemático francés, Abraham de Moivre. La fórmula permite encontrar el enésimo número de Fibonacci sin la necesidad de producir todos los números anteriores. La fórmula de Binet depende exclusivamente del número áureo:
El número áureo en la Naturaleza
Existen desacuerdos sobre la neutralidad en el punto de vista de la versión actual de este artículo o sección.En la página de discusión puedes consultar el debate al respecto.
Concha de nautilus en espiral logarítmica
En la naturaleza, hay muchos elementos relacionados con la sección áurea:
Existen cristales de Pirita dodecaédricos pentagonales (piritoedros)cuyas caras son pentágonos perfectos.
Leonardo de Pisa (Fibonacci), en su Libro de los ábacos (Liber abacci, 1202, 1228), usa la sucesión que lleva su nombre para calcular el número de pares de conejos n meses después de que una primera pareja comienza a reproducirse (suponiendo que los conejos están aislados por muros, se empiezan a reproducir cuando tienen dos meses de edad, tardan un mes desde la fecundación hasta la parición y cada camada es de dos conejos). Este es un problema matemático puramente independiente de que sean conejos los involucrados. En realidad, el conejo común europeo tiene camadas de 4 a 12 individuos y varias veces al año, aunque no cada mes, pese a que la preñez dura 32 días. El problema se halla en las páginas 123 y 124 del manuscrito de 1228, que fue el que llegó hasta nosotros, y parece que el planteo recurrió a conejos como pudiera haber sido a otros seres; es un soporte para hacer comprensible una incógnita, un acertijo matemático . El cociente de dos términos sucesivos de la Sucesión de Fibonacci tiende a la sección áurea o al número áureo si la fracción resultante es propia o impropia, respectivamente. Lo mismo sucede con toda sucesión recurrente de orden dos, según demostraron Barr y Schooling en la revista The Field del 14 de diciembre de 1912.[3]
La relación entre la cantidad de abejas macho y abejas hembra en un panal.
La disposición de los pétalos de las flores (el papel del número áureo en la botánica recibe el nombre de Ley de Ludwig).
La distribución de las hojas en un tallo. Ver: Sucesión de Fibonacci.
La relación entre las nervaduras de las hojas de los árboles
La relación entre el grosor de las ramas principales y el tronco, o entre las ramas principales y las secundarias (el grosor de una equivale a Φ tomando como unidad la rama superior).
La distancia entre las espirales de una Piña.
La relación entre la distancia entre las espiras del interior espiralado de cualquier caracol o de cefalópodos como el nautilus hay por lo menos tres espirales logarítmicas más o menos asimilables a proporciones aúreas. La primera de ellas se caracteriza por la relación constante igual al número áureo entre los radiovectores de puntos situados en dos evolutas consecutivas en una misma dirección y sentido. Las conchas del Fusus antiquus, del Murex, de Scalaria pretiosa, de Facelaria y de Solarium trochleare, entre otras, siguen este tipo de espiral de crecimiento.[4 [5] Se debe entender que en toda consideración natural, aunque involucre a las ciencias consideradas más matemáticamente desarrolladas, como la Física, ninguna relación o constante que tenga un número infinito de decimales puede llegar hasta el límite matemático, porque en esa escala no existiría ningún objeto físico. La partícula elemental más diminuta que se pueda imaginar es infinitamente más grande que un punto en una recta. Las leyes observadas y descriptas matemáticamente en los organismos las cumplen transgrediéndolas orgánicamente.[6]
Para que las hojas esparcidas de una planta (Ver Filotaxis) o las ramas alrededor del tronco tengan el máximo de insolación con la mínima interferencia entre ellas, éstas deben crecer separadas en hélice ascendente según un ángulo constante y teóricamente igual a 360º (2 - φ) ≈ 137º 30' 27,950 580 136 276 726 855 462 662 132 999..." En la naturaleza se medirá un ángulo práctico de 137º 30' o de 137º 30' 28" en el mejor de los casos. Para el cálculo se considera iluminación vertical y el criterio matemático es que las proyecciones horizontales de unas sobre otras no se recubran exactamente. Aunque la iluminación del Sol no es, en general, vertical y varía con la latitud y las estaciones, esto garantiza el máximo aprovechamiento de la luz solar. Este hecho fue descubierto empíricamente por Church y confirmado matemáticamente por Weisner en 1875. En la práctica no puede medirse con tanta precisión el ángulo y las plantas lo reproducen "orgánicamente"; o sea, con una pequeña desviación respecto al valor teórico. En la cantidad de elementos constituyentes de las espirales o dobles espirales de las inflorescencias, como en el caso del girasol, y en otros objetos orgánicos como las piñas de los pinos se encuentran números pertenecientes a la sucesión de Fibonacci.
El número áureo en el ser humano
Existen desacuerdos sobre la neutralidad en el punto de vista de la versión actual de este artículo o sección.En la página de discusión puedes consultar el debate al respecto.
La Anatomía de los humanos se basa en una relación Φ estadística y aproximada, así vemos que:
La relación entre la altura de un ser humano y la altura de su ombligo.
La relación entre la distancia del hombro a los dedos y la distancia del codo a los dedos.
La relación entre la altura de la cadera y la altura de la rodilla.
La relación entre el primer hueso de los dedos (metacarpiano) y la primera falange, o entre la primera y la segunda, o entre la segunda y la tercera, si dividimos todo es Φ.
La relación entre el diámetro de la boca y el de la nariz
Es Φ la relación entre el diámetro externo de los ojos y la línea inter-pupilar
Cuando la tráquea se divide en sus bronquios, si se mide el diámetro de los bronquios por el de la tráquea se obtiene Φ, o el de la aorta con sus dos ramas terminales (ilíacas primitivas).
El número áureo en el Arte
Existen desacuerdos sobre la neutralidad en el punto de vista de la versión actual de este artículo o sección.En la página de discusión puedes consultar el debate al respecto.
Hombre de Vitruvio
Leonardo da Vinci
Relaciones en la forma de la Gran Pirámide de Gizeh. La afirmación de Heródoto de que el cuadrado de la altura es igual a la superficie de una cara es posible únicamente si la semi-sección meridiana de la pirámide es proporcional al triángulo rectángulo , donde 1 representa proporcionalmente a la mitad de la base, la raíz cuadrada del número áureo a la altura hasta el vértice inexistente y el número áureo o hipotenusa del triángulo a la apotema de la Gran Pirámide. Esta tesis ha sido defendida por los matemáticos Jarolimek, K. Kleppisch y W. A. Price (ver referencias), cuenta con el testimonio histórico de Heródoto y resulta teóricamente con sentido, aunque una construcción de semejante tamaño deba contener errores inevitables a toda obra arquitectónica y a la misma naturaleza de la tecnología humana, que en la práctica puede manejar únicamente números racionales. Los demás investigadores famosos se inclinan por la hipótesis de que los constructores intentaron una cuadratura del círculo, pues la raíz cuadrada del número áureo se aproxima mucho al cociente de 4 sobre π. Pero una construcción tal, aunque se conociera π con una aproximación grande, carecería completamente de sentido matemático. No obstante, en base a mediciones no es posible elegir entre una u otra pues la diferencia sobre el monumento real no es mayor a 14,2 cm y esta pequeña variación queda enmascarada por las incertidumbres de las medidas, los errores constructivos y, principalmente, porque la pirámide perdió el revestimiento en manos de los primeros constructores de El Cairo. Para que esto quede más claro, una precisión del 1 por mil en una base de 230 metros equivale a 23 centímetros y en la altura está en el orden de la diferencia real que debería existir entre ambas posibilidades.
La relación entre las partes, el techo y las columnas del Partenón, en Atenas (s. V a. C.).Durante el primer cuarto del siglo XX, Jay Hambidge, de la Universidad de Yale, se inspiró en un pasaje del Theeteto de Platón para estudiar las proporciones relativas de las superficies, algo muy natural cuando se trata de obras arquitectónicas. Dos rectángulos no semejantes se distinguen entre sí por el cociente de su lado mayor por el menor, número que basta para caracterizar a estas figuras y que denominó módulo del rectángulo. Un cuadrado tiene módulo 1 y el doble cuadrado módulo 2. Aquellos rectángulos cuyos módulos son números enteros o racionales fueron denominados "estáticos" y los que poseen módulos irracionales euclidianos, o sea, expresables algebraicamente como raíces de ecuaciones cuadráticas o reducibles a ellas, "dinámicos". El doble cuadrado es a la vez estático y dinámico, pues 2 es la raíz cuadrada de 4. Un ejemplo de rectángulo dinámico elemental es aquel que tiene por lado mayor a la raíz cuadrada de 5 y por lado menor a la unidad, siendo su módulo la raíz cuadrada de 5.[7] Posteriormente Hambidge estudió a los monumentos y templos griegos y llegó a encuadrar el frontón del Partenón en un rectángulo de módulo . Por medio de cuatro diagonales suministra las principales proporciones verticales y horizontales. Este rectángulo es descompuesto en seis de módulo y cuatro cuadrados.[8] Como dato adicional para indicar la complejidad del tratamiento del edificio se tiene que en 1837 fueron descubiertas correcciones ópticas en el Partenón. El templo tiene tres vistas principales y si sus columnas estuvieran efectivamente a plomo, todas sus líneas fuesen paralelas y perfectamente rectas y los ángulos rectos fueran exactos, por las propiedades de la visión humana el conjunto se vería más ancho arriba que en la base, sus columnas se percibirían inclinadas hacia afuera y la línea que fundamenta el techo sobre las columnas se vería como una especie de catenaria, con los extremos del edificio aparentemente más altos que el centro. Los constructores hicieron la construcción compensando estos efectos de ilusión óptica inclinando o curvando en sentido inverso a los elementos involucrados. Así las columnas exteriores,en ambos lados del frente, están inclinadas hacia adentro en un ángulo de 2,65 segundos de arco, mientras que las que están en el medio tienen una inclinación de 2,61 segundos de arco. La línea que formarían los dinteles entre columnas y que constituye la base del triángulo que corona el edificio, en realidad es un ángulo de 2,64 segundos de arco con el vértice más elevado que los extremos. De esta forma, y con otras correcciones que no se mencionan aquí, se logra que cualquier observador que se sitúe en los tres puntos principales de vista vea todo el conjunto paralelo, uniforme y recto.[9]
En el cuadro Leda atómica de Salvador Dalí, hecho en colaboración con el matemático rumano Matila Ghyka.
En los violines, la ubicación de las efes (los “oídos”, u orificios en la tapa) se relaciona con el número áureo.
El número áureo aparece en las relaciones entre altura y ancho de los objetos y personas que aparecen en las obras de Miguel Ángel, Durero y Leonardo Da Vinci, entre otros.
Las relaciones entre articulaciones en el hombre de Vitruvio y en otras obras de Leonardo da Vinci.
En las estructuras formales de las sonatas de Mozart, en la Quinta Sinfonía de Beethoven, en obras de Schubert y Debussý (estos compositores probablemente compusieron estas relaciones de manera inconsciente, basándose en equilibrios de masas sonoras).
En la pág. 61 de la novela de Dan Brown El código Da Vinci aparece una versión desordenada de los primeros ocho números de Fibonacci (13, 3, 2, 21, 1, 1, 8, 5), que funcionan como una pista dejada por el curador del museo del Louvre, Jacques Saunière. En las pp. 121 a 123 explica algunas de las apariciones de este número fi (1,618) en la naturaleza.
En el episodio “Sabotaje” de la serie de televisión NUMB3RS (primera temporada, 2005), el genio de la matemática Charlie Eppes menciona que el número fi se encuentra en la estructura de los cristales, en la espiral de las galaxias y en la concha del nautilus.
Arte Póvera, movimiento artístico italiano de los años 1960, muchas de cuyas obras se basan en esta sucesión.
En la cinta de Darren Aronofsky Pi, fe en el caos el personaje central, Max Cohen, explica la relación que hay entre los números de Fibonacci y la sección áurea, aunque denominándola incorrectamente como Theta (θ) en vez de Phi (Φ).
El número áureo en la Música
Existen desacuerdos sobre la neutralidad en el punto de vista de la versión actual de este artículo o sección.En la página de discusión puedes consultar el debate al respecto.
Es necesario aclarar que cuando se menciona al número áureo en una realización artística de cualquier naturaleza no se está haciendo mención al número áureo de los matemáticos, un irracional con infinitos decimales, sino a una aproximación racional adecuada a las circunstancias o a un dibujo hecho con regla no graduada de un solo borde y longitud indefinida y un compás de abertura fija o variable. Generalmente se utilizan cocientes de números pertenecientes a la sucesión de Fibonacci que dan valores aproximados, alternativamente por defecto o por exceso, según la necesidad o la sensibilidad humana y hasta la capacidad de separación tonal de cada instrumento. Un violín, por ejemplo, puede separar hasta un tercio de tono. El oído humano sano y entrenado distingue hasta trescientos sonidos por octava. Como un ejemplo conocido y no discutido tenemos a la escala atemperada o templada. Esta es una escala logarítmica. Se creó muy poco tiempo después de que los logaritmos pasaran al patrimonio de la matemática. La octava atemperada está basada en . Este número irracional tiene infinitos decimales, pero la afinación se hace redondeando las cifras de las frecuencias a uno o dos decimales. De cualquier manera, el error tonal total cometido no es superior al doceavo de tono y el oído humano no lo nota. La uniformidad de la separación de las notas y la coincidencia de bemoles y sostenidos permite comenzar una melodía por cualquier nota sin que se produzcan las desagradables disonancias de la escala diatónica y la escala física. De la misma manera se actúa con la distribución de tiempos o la altura de los tonos usando el número áureo; con una aproximación racional que resulte práctica. Existen numerosos estudios al respecto, principalmente de la Universidad de Cambridge.
Autores como Bártok,[10] Messiaen y Stockhausen, entre otros, compusieron obras cuyas unidades formales se relacionan (a propósito) con la sección áurea.
El compositor mexicano Silvestre Revuelta (1899-1945) utilizó también el número áureo en su obra Alcancías, para organizar las partes (unidades formales).
El grupo de rock progresivo norteamericano Tool, en su disco Lateralus (2001) hacen múltiples referencias al número áureo y a la sucesión de Fibonacci, sobre todo en la canción que da nombre al disco, pues los versos de la misma están cantados de forma que el número de sílabas pronunciadas en cada uno van componiendo dicha secuencia. Además la voz entra en el minuto 1:37, que pasado al sistema decimal coincide muy aproximadamente con el número áureo.
Zeysing notó la presencia de los números 3, 5, 8 y 13, de la Sucesión de Fibonacci, en el cálculo de los intervalos aferentes a los dos tipos de acordes perfectos. Los dos tonos del acorde mayor final, mi y do por ejemplo (la sexta menor o tercia mayor invertida en do mayor), están entre sí en la razón cinco octavos. Los dos tonos del acorde menor final, por ejemplo, mi bemol y do (sexta mayor o tercia transpuesta en do menor) dan la razón tres quintos.[11]
El compositor norteamericano John Chowning basó varios aspectos de su pieza por computador Stria (1976) en la proporción áurea, proyectandola en las relaciones de tiempo y frecuencia de los elementos que componen la obra. El clímax de la obra ocurre en el punto en el que la obra se divide en dos secciones de acuerdo con la proporción áurea. El sistema que se utiliza en esta obra para organizar las alturas está basado en seudo-octavas con relación de 1:1.618, diferente de la habitual relación 1:2. El instrumento de computadora usado para la pieza, basado en síntesis por modulación de frecuencias, tiene a las relaciones entre sus osciladores con base en la misma relación.[12]
TCP/IP
La familia de protocolos de Internet es un conjunto de protocolos de red en la que se basa Internet y que permiten la transmisión de datos entre redes de computadoras. En ocasiones se le denomina conjunto de protocolos TCP/IP, en referencia a los dos protocolos más importantes que la componen: Protocolo de Control de Transmisión (TCP) y Protocolo de Internet (IP), que fueron los dos primeros en definirse, y que son los más utilizados de la familia. Existen tantos protocolos en este conjunto que llegan a ser más de 100 diferentes, entre ellos se encuentra el popular HTTP (HyperText Transfer Protocol), que es el que se utiliza para acceder a las páginas web, además de otros como el ARP (Address Resolution Protocol) para la resolución de direcciones, el FTP (File Transfer Protocol) para transferencia de archivos, y el SMTP (Simple Mail Transfer Protocol) y el POP (Post Office Protocol) para correo electrónico, TELNET para acceder a equipos remotos, entre otros.
El TCP/IP es la base de Internet, y sirve para enlazar computadoras que utilizan diferentes sistemas operativos, incluyendo PC, minicomputadoras y computadoras centrales sobre redes de área local (LAN) y área extensa (WAN). TCP/IP fue desarrollado y demostrado por primera vez en 1972 por el Departamento de Defensa de los Estados Unidos, ejecutándolo en ARPANET, una red de área extensa de dicho departamento.
matematicas y tecnologia
Vinton 'Vint' G. Cerf. científico de la computación estadounidense, considerado como uno de los 'padres' de Internet. Nacido en Connecticut (Estados Unidos) en 1943, se graduó en Matemáticas y Ciencias de la Computación en la universidad de Stanford (1965). Durante su estancia posterior en la Universidad de California (UCLA) obtuvo el Máster en Ciencia y el Doctorado.
A principios de los años 70 comenzó a trabajar con Robert Kahn en el desarrollo de un conjunto de protocolos de comunicaciones para la red militar ARPANET financiado por la agencia gubernamental DARPA. El objetivo era crear una "red de redes" que permitiera interconectar las distintas redes del Departamento de Defensa norteamericano, todas ellas de diferente tipo y funcionando sobre diferentes sistemas operativos, con independencia del tipo de conexión: radioenlaces, satélites y líneas telefónicas.
Las investigaciones, lideradas por Vinton Cerf, primero desde la Universidad de California (1967-1972) y posteriormente desde la Universidad de Stanford (1972-1976), llevaron al diseño del conjunto de protocolos que hoy son conocidos como TCP/IP (Transmission Control Protocol/Internet Protocol), que fue presentado por Vinton Cerf y Robert Kahn en 1972).
Entre 1976 y 1982, trabajando en DARPA, fue pionero en el desarrollo de la transmisión por radio y satélite de paquetes, responsable del proyecto Internet y del programa de investigación de seguridad en la red. Siempre preocupado por los problemas de conexión de redes, Cerf estableció en 1979 la Internet Configurarion Control Board (que posteriormente se denominó Internet Activities Board) y fue su primer presidente.
Entre 1982 y 1986, Cerf diseñó el MCI MAIL, primer servicio comercial de correo electrónico que se conectaría a Internet.
En 1992 fue uno de los fundadores de la Internet Society y su primer presidente.
Actualmente Vinton Cerf es el Chief Internet Evangelist de Google, ocupación que compagina con el cargo de presidente del ICANN.
Vinton Cerf tambien inventó el HTML:
HTML, siglas de HyperText Markup Language (Lenguaje de Marcas de Hipertexto), es el lenguaje de marcado predominante para la construcción de páginas web. Es usado para describir la estructura y el contenido en forma de texto, así como para complementar rodeadas por corchetes angulares(<,>). HTML también puede describir, hasta un cierto punto, la apariencia de un documento, y puede incluir un script (por ejemplo Javascript), el cual puede afectar el comportamiento de navegadores web y otros procesadores de HTML.
TIM BERNERS-LEE
Sir Timothy "Tim" John Berners-Lee, OM, KBE (TimBL o TBL) nació el 8 de junio de 1955 en Londres, Reino Unido, se licenció en Física en 1976 en el Queen's College de la Universidad de Oxford. Es considerado como el padre de la web.
Básicamente, Tim, ante la necesidad de distribuir e intercambiar información acerca de sus investigaciones de una manera más efectiva, desarrolló las ideas que forman parte de la web. Tim y su grupo desarrollaron lo que por sus siglas en inglés se denominan: Lenguaje HTML (HyperText Markup Language) o lenguaje de etiquetas de hipertexto; el protocolo HTTP (HyperText Transfer Protocol); y el sistema de el texto con objetos tales como imágenes. HTML se escribe en forma de "etiquetas", localización de objetos en la web URL (Uniform Resource Locator). Muchas de las ideas plasmadas por Berners-Lee podemos encontrarlas en el proyecto Xanadu que propuso Ted Nelson y el memex de Vannevar BushD.
Tim Berners-Lee invento el HTTP:
El protocolo de transferencia de hipertexto (HTTP, HyperText Transfer Protocol) es el protocolo usado en cada transacción de la Web (WWW). HTTP fue desarrollado por el consorcio W3C y la IETF, colaboración que culminó en 1999 con la publicación de una serie de RFC, siendo el más importante de ellos el RFC 2616, que especifica la versión 1.1.
HTTP define la sintaxis y la semántica que utilizan los elementos software de la arquitectura web (clientes, servidores, proxies) para comunicarse. Es un protocolo orientado a transacciones y sigue el esquema petición-respuesta entre un cliente y un servidor. Al cliente que efectúa la petición (un navegador o un spider) se lo conoce como "user agent" (agente del usuario). A la información transmitida se la llama recurso y se la identifica mediante un URL. Los recursos pueden ser archivos, el resultado de la ejecución de un programa, una consulta a una base de datos, la traducción automática de un documento, etc.
HTTP es un protocolo sin estado, es decir, que no guarda ninguna información sobre conexiones anteriores. El desarrollo de aplicaciones web necesita frecuentemente mantener estado. Para esto se usan las cookies, que es información que un servidor puede almacenar en el sistema cliente. Esto le permite a las aplicaciones web instituir la noción de "sesión", y también permite rastrear usuarios ya que las cookies pueden guardarse en el cliente por tiempo indeterminado.
martes, 24 de marzo de 2009
Matemáticas: Juegos, Diversiones y Curiosidades
Hank Tade-Mai es un viajero que retorna en su camello a Bagdad, luego de una excursión a la ciudad de Samarra. En su camino, encuentra a un hombre modestamente vestido, sentado en una piedra y exclamando en voz alta números gigantescos. El hombre que calculaba dice llamarse Beremiz Samir y cuenta que nació en Persia, donde
El tío Petros y la conjetura de Goldbach
El anciano tío Petros vive retirado de la vida social y familiar, entregado al cuidado de su jardín y a la práctica del ajedrez. Su sobrino, sin embargo, descubre un día por azar que el tío Petros fue un matemático eminente, profesor en Alemania e trabajando como pastor comenzó a contar ovejas para no extraviar ninguna, siendo que a partir de entonces tomó el gusto por contar y calcular acerca de todo lo que encuentra a su paso.
Inglaterra, niño prodigio en esta disciplina y estudioso totalmente absorto en sus investigaciones científicas. Como irá descubriendo el sobrino, y el lector con él, la vida de Petros Papachristos ha girado durante años en torno a la famosa conjetura de Goldbach, un problema en apariencia sencillo, pero que durante más de dos siglos nadie ha conseguido resolver. En El tío Petros y la conjetura de Goldbach las matemáticas adquieren una dimensión simbólica, y los esfuerzos de un estudioso por resolver un enigma reflejan la lucha prometeica del ser humano por conquistar lo imposible.
http://www.tallerdemateprofe.blogspot.com